Semana passada, nos dias 22 a 24 de Fevereiro aconteceu o VIII Simpósio de
Análise Numérica e Otimização.
Nesse evento, eu apresentei um minicurso de Julia com foco em Otimização não
Linear.
Entre 10 e 15 pessoas participaram no total, entre alunos de graduação, de
pós-graduação, e professores.
O objetivo principal era apresentar a linguagem e alguns detalhes importante
para otimização não linear, o que foi obtido.
Por outro lado, as aulas foram mais longas do que deveriam, e o conteúdo ficou
muito esparso, pois tive que variar entre o básico e uma aplicação mais
avançada.
Para o próximo workshop, provavelmente focarei na introdução, que foi a primeira
aula.
O conteúdo pode ser obtido aqui, e consiste de três notebooks em Jupyter, uma introdução e outros arquivos.
Para rodar os notebooks, você precisa instalar o Jupyter, o Julia e o IJulia.
Alternativamente, use o JuliaBox para rodá-los online.
Além disso, para a segunda aula em diante você precisa do CUTEst, que pode ser
instalado seguindo este post.
Minha recomendação de editor é o Atom, com os plugins language-julia e latex-completions.
Para uma experiência com testes automatizados, veja também este post.
Coveralls.io to verify which lines of code your test
are missing.
Alternatively, for a open source alternative, see GitLab,
which I don’t know enough yet.
Let’s make a litte code to solve a linear system, paying attention to the
problems it may arise, like incorrect dimensions, underdetermined and
overdetermined systems, singular matrices, etc.
And we’ll be using the factorizations, but not \.
The math
A simple (not cheap) way to do it is using Singular Value Decomposition (SVD).
We have
where $r$ is the rank of $A$.
Since the columns of $V$ form a basis for $\mathbb{R}^n$ (where $x$ resides),
then
Now, we have
If the system has a solution, that is $Ax = b$, then we multiply by $u_j^T$,
obtaining
Thus, .
If the system doesn’t have a solution, this still holds. I’ll leave the steps to
you.
If , then $\alpha$ has undetermined values. However, when that’s the
case, the solution we’ll use is the one with the smallest norm, that is, the one
that minimizes $\Vert x\Vert$.
Since are orthonormal, then
.
So, in order to minimize the norm of x, we use for $i > r$.
The code
We’ll store the code on this GitHub
repository.
Note, however, that it will point to the completed version.
A possible implementation of our code is as follows:
To test it, open julia on the root folder and do
If the result is around $1e-16$, then everything went well.
Very rarely, the generated matrix could be ill-conditioned.
Run again, to verify if that’s the case.
If everything went well, we’ll write a test now.
For now, let’s write a simple test running a lot of square linear systems.
For each system, to avoid using A\b, we’ll create a vector b from a known
solution. Then we’ll assure that
and .
To do that, we’ll use Base.Test.
Note however, that the condition of the matrix influences the error, and there
are numerical errors involved. So we’ll use the condition
.
The code is
Run with
Nothing should appear.
The first line is a kludge to read the correct file from wherever the run the
code. If you’re not building a module, this is ok. But normally you’ll want to
build a module. Ignore that for now.
The first for varies the dimension, and the second for runs the code a specific
number of times.
This totals a hundred square linear systems being run.
The @test macro verifies that the given expression is true.
If any solution is wrong, the code will be wrong. Also, if you use a smaller
tolerance, the numerical rounding may give a error here.
Ok, first thing you wanna do now is commit this code.
Then, go to GitHub, create an account, then a repository for this code (e.g.
linear_system.jl), then push the code. Use the name with .jl in the end for the repository.
Enter your password and verify the code is online.
Online testing
Now go to Travis and create an account. Go to your profile and
click on the Sync account button if necessary.
Find your repository and set the button to on.
Now, with the next commit, a test will start. Let’s make it happen.
Create a file .travis.yml (yes, with a leading dot) with information for the
build. Here’s a simple file:
Include the file and push
Now, go to your travis page, and after a while you’ll see your repository with a
test running (or already finished, because it is short).
You should have a passing test. If not, verify your files again, then the error
on travis.
Notice that you can see the complete log of what is run.
Using an online automated testing is useful for many reasons:
Everyone can see if the code is working;
Pull requests generate a travis build, so you can see if it’s working;
You don’t forget to test;
You test on a clean environment;
You can test with multiple versions of Julia (or other linguage).
Coverage
Now, let’s see the code coverage.
First, for coverage you’ll need a package to see the coverage, and the service
to publish the coverage.
Use Coverage.jl to see your coverage
(including locally).
Install with
Then run
This will generate a file src/solve_linear.jl.xxx.cov with the information.
The option --inline=no gives more accurate results, but slow down the code.
You can see which function are not being run by reading it, but it’s better to
see it online.
To see a summary, use
But we want to see it online. So go to Coveralls.io and create an account.
Click on Add repos and find you repository.
Enable it, and change the .travis.yml file to
After a success, we install Coverage and run the relevant code.
Check your repository on Coveralls to see the results.
Notice how the error line on our code never gets called.
Improving to a module
If you want people to use your code, you should use a module in Julia.
This allows easy installation of your code, and not much more work.
Changing to a module is very simple, so I’ll run through it.
The folders src and test are required. But we also need
A file in src with the same name as the repository;
The keyword module on that file;
export the relevant functions;
A file test/runtests.jl that run the tests;
A README.md for people to know about your thing;
A LICENSE.md for people to know what they can do with your file;
Different .travis.yml.
I’m using the name BlogAutomatedTesting.jl, so a create the file
I edit the file
Then file
and
And create a README.md
The LICENSE.md file is up which license you’ll choose.
See this site for options.
Copy the contents to the file.
Now change .travis.yml to treat your code like a package.
Commit and verify your update on Travis and Coveralls
Nos dias 22 a 24 de Fevereiro de 2016 acontecerá o VIII Simpósio de Análise
Numérica e Otimização.
É uma ótima oportunidade para interagir com colegas e conhecer alguns assuntos
novos de pesquisa.
Em particular, nesse simpósio apresentarei um minicurso sobre Julia com foco em
Otimização. O minicurso é voltado para pessoas que conhecem um pouco de MatLab
ou alguma outra linguagem. Serão três dias, com uma introdução à linguagem,
alguns exemplos, o CUTEst.jl,
e um workflow para criar um pacote de otimização com transição para C e Fortran.
O material para o minicurso está disponível aqui
(neste momento ainda incompleto).